limpca: An R package for the linear modeling of high‐dimensional designed data based on ASCA/APCA family of methods

Author:

Thiel Michel1ORCID,Benaiche Nadia1,Martin Manon2ORCID,Franceschini Sébastien3,Van Oirbeek Robin1,Govaerts Bernadette1

Affiliation:

1. Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA), Louvain Institute of Data Analysis and Modeling in Economics and Statistics (LIDAM) UCLouvain Louvain‐la‐Neuve Belgium

2. Louvain Institute of Biomolecular Science and Technology (LIBST) UCLouvain Louvain‐la‐Neuve Belgium

3. Gembloux Agro‐Bio Tech, Département GxABT, Modelisation and developpement TERRA Research Centre ULiège Gembloux Belgium

Abstract

SummaryMany modern analytical methods are used to analyze samples issued from an experimental design, for example, in medical, biological, chemical, or agronomic fields. Those methods generate most of the time, highly multivariate data like spectra or images, where the number of variables (descriptor responses) tends to be much larger than the number of experimental units. Therefore, multivariate statistical tools are necessary to identify variables that are consistently affected by experimental factors. In this context, two recent methods combining ANOVA and PCA, namely, ASCA (ANOVA‐Simultaneous Component Analysis) and APCA (ANOVA‐Principal Component Analysis), were developed. They provide powerful visualization tools for multivariate structures in the space of each effect of the statistical model linked to the experimental design. Their main limitation is that they produce biased estimators of the factor effects when the design of experiment is unbalanced. This article presents the R package limpca (for linear models with principal component effects analysis) that implements ASCA+ and APCA+, an enhanced version of ASCA and APCA methods based on several principles from the theory of general linear models (GLM). In this paper, the methodology is reviewed, the package structure and functions are presented, and a metabolomics data set is used to clearly demonstrate the potential of ASCA+ and APCA+ methods to highlight true biomarkers corresponding to effects of interest in unbalanced designs.

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3