Reframing prosegment‐dependent folding and limits on natural protein folding landscapes from an evolutionary perspective

Author:

Sanders Andrew D.1ORCID,Dee Derek R.1,Yada Rickey Y.1

Affiliation:

1. Faculty of Land and Food Systems University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractIn this perspective, we propose that the folding energy landscapes of model proteases including pepsin and alpha‐lytic protease (αLP), which lack thermodynamic stability and fold on the order of months to millennia, respectively, should be viewed as not evolved and fundamentally distinct from their extended zymogen forms. These proteases have evolved to fold with prosegment domains and robustly self‐assemble as expected. In this manner, general protein folding principles are strengthened. In support of our view, αLP and pepsin exhibit hallmarks of frustration associated with unevolved folding landscapes, such as non‐cooperativity, memory effects, and substantial kinetic trapping. The evolutionary implications of this folding strategy are considered in detail. Direct applications of this folding strategy on enzyme design, finding new drug targets, and constructing tunable folding landscapes are also discussed. Together with certain proteases, growing examples of other folding “exceptions”—including protein fold switching, functional misfolding, and prevalent inability to refold—suggests a paradigm shift in which proteins may evolve to exist in a wide range of energy landscapes and structures traditionally thought to be avoided in nature.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3