Investigation of biological activities of two cultivars of Cicer arietinum proteins mass associated with Alzheimer's disease

Author:

Mafakher Ladan1,Rismani Elham2,Saeedi Mina3,Emami Mir Mohammad Reza Hosseini Moghadam4,Hadjiakhoondi Abbas45,Najafi Zahra6,Manayi Azadeh5ORCID

Affiliation:

1. Thalassemia & Hemoglobinopathy Research center, Health research institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

2. Molecular Medicine Department Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran

3. Persian Medicine and Pharmacy Research Center Tehran University of Medical Sciences Tehran Iran

4. Department of Pharmacognosy, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran

5. Medicinal Plants Research Center, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran

6. Department of Medicinal Chemistry, School of Pharmacy Hamedan University of Medical Sciences Hamedan Iran

Abstract

AbstractAlzheimer's disease (AD) is the most common cause of dementia in the elderly, with some known classical factors. Cicer arietinum (Leguminosae) is a source of protein for humans and contains albumin, globulin, glutelin, and prolamin. The protein content of two cultivars of C. arietinum, Hashem and Mansour, was isolated to evaluate their inhibition activity against acetylcholinesterase (AChE), butyrylcholine esterase (BChE), and β‐amyloid peptide (βA) aggregation. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and molecular docking were also applied to evaluate the content and determine the potential of each chickpea protein to interact with AChE, respectively. Obtained data showed that proteins from both cultivars could inhibit AChE with IC50 of 17.73 (0.03) and 22.20 (0.06) μg/mL, respectively, with no activity on BChE. The 50 μg/mL protein concentration of each cultivar suppressed βA accumulation (Mansour: 25.66% and Hashem: 21.69%) and showed biometal chelating activity. SDS‐PAGE analysis revealed relatively different protein patterns, though the Mansour cultivar contained some protein bands with molecular weights of 18, 24, and 70 kDa were estimated to belong to vicilin and legumin, which were absent in the Hashem protein mass. Molecular docking showed that legumin and especially vicilin have good potential to interact with AChE. The chickpea proteins showed inhibitory activity against AChE, which might be due to the vicilin and legumin fractions. The characterization of the inhibitory effect of each protein band could be promising in finding new therapeutic peptide candidates to treat Alzheimer's in the future, although more experimental work is needed in this issue.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3