Ca2+ ions facilitate the organization of the Annexin A2/S100A10 heterotetramer

Author:

Lindsay Samuel1,Bartolotti Libero1,Li Yumin1

Affiliation:

1. Department of Chemistry East Carolina University Greenville North Carolina 27858 USA

Abstract

AbstractAnnexin A2 (A2) is a member of the Annexin family, which contains Ca2+‐regulated phospholipid‐binding proteins. Annexins associate with S100 proteins to form heterotetramers. The A2/S100A10 heterotetramer (A2t) is the most extensively studied of these heterotetramers. It induces membrane microdomain formation, causes membrane budding, and facilitates proliferation of some cancers. In this work, the first molecular dynamics (MD) study on the complete A2t of 868 amino acids was performed. MD trajectories of more than 600 ns each were generated for complete A2t complexes with and without Ca2+ ions. The outward extension of membrane‐binding residues A2‐K279 and A2‐K281 was shown to be inhibited in the absence of Ca2+ as they were captured by Ca2+‐binding residue D322. F‐actin binding residue A2‐D339 was observed to occupy either an exposed or buried state in the absence of Ca2+, while it only occupied the buried state in the presence of Ca2+. The observed motions of the A2t subunits are highly organized with a strongly correlated central region which is negatively correlated with the periphery of the complex. The central region contains the S100A10 (p11) dimer, A2‐N, and A2‐I, while the periphery contains A2‐II, A2‐III, and A2‐IV. Novel interactions between A2 and p11 were identified. A2 residues outside of A2‐N (K80, R77, E82, and R145) had strong interactions with p11. Residue R145 of A2 may have a significant effect on the dynamics of the system, with its interaction resulting in asymmetric motions of A2. The presented results provide novel insights to inform future experimental studies.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3