Affiliation:
1. Department of Chemistry Wesleyan University Middletown Connecticut USA
Abstract
AbstractComputationally modeling how mutations affect protein–protein binding not only helps uncover the biophysics of protein interfaces, but also enables the redesign and optimization of protein interactions. Traditional high‐throughput methods for estimating binding free energy changes are currently limited to mutations directly at the interface due to difficulties in accurately modeling how long‐distance mutations propagate their effects through the protein structure. However, the modeling and design of such mutations is of substantial interest as it allows for greater control and flexibility in protein design applications. We have developed a method that combines high‐throughput Rosetta‐based side‐chain optimization with conformational sampling using classical molecular dynamics simulations, finding significant improvements in our ability to accurately predict long‐distance mutational perturbations to protein binding. Our approach uses an analytical framework grounded in alchemical free energy calculations while enabling exploration of a vastly larger sequence space. When comparing to experimental data, we find that our method can predict internal long‐distance mutational perturbations with a level of accuracy similar to that of traditional methods in predicting the effects of mutations at the protein–protein interface. This work represents a new and generalizable approach to optimize protein free energy landscapes for desired biological functions.
Funder
Division of Molecular and Cellular Biosciences
National Science Foundation
Subject
Molecular Biology,Biochemistry,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献