Host resources and parasite traits interact to determine the optimal combination of host parasite‐mitigation strategies

Author:

Dean Andrew D.1ORCID,Childs Dylan Z.2ORCID,Corripio‐Miyar Yolanda3ORCID,Evans Mike345ORCID,Hayward Adam3ORCID,Kenyon Fiona3ORCID,McNally Luke5ORCID,McNeilly Tom N.3ORCID,Pakeman Robin J.6ORCID,Sweeny Amy R.25ORCID,Nussey Daniel H.5ORCID,Pedersen Amy B.5ORCID,Fenton Andy1ORCID

Affiliation:

1. Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool UK

2. School of Biosciences The University of Sheffield Sheffield UK

3. Department for Disease Control Moredun Research Institute Penicuik UK

4. The University of Edinburgh Royal (Dick) School of Veterinary Studies Roslin UK

5. Institute of Ecology and Evolution, School of Biological Sciences University of Edinburgh Edinburgh UK

6. The James Hutton Institute Aberdeen UK

Abstract

AbstractOrganisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life‐history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite‐mitigation strategies, we developed a mathematical model of within‐host, parasite‐immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non‐immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite‐mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance.Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.

Funder

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3