Effect of vegetation blanket cover with different materials on soil microbial community structure of opencast coal mines in arid areas

Author:

Wang Ziyin123ORCID,Liu Huili12,Crabbe M. J. C.456,Zhao Xiaoyu12,Liu Bingru123

Affiliation:

1. Key Laboratory of Ecological Protection of Agro‐Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China North Minzu University Yinchuan People's Republic of China

2. School of Biological Science & Engineering North Minzu University Yinchuan People's Republic of China

3. Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments in Ningxia North Minzu University Yinchuan People's Republic of China

4. Wolfson College Oxford University Oxford UK

5. Institute of Biomedical and Environmental Science & Technology University of Bedfordshire Luton UK

6. School of Life Sciences Shanxi University Taiyuan People's Republic of China

Abstract

AbstractVegetation blanket restoration of mine soils provides a diverse environment for soil microbes, but the effects of vegetation blanket cover on soil physicochemical properties, microbial structure, and diversity are not well understood, particularly in arid areas. In this study, high‐throughput sequencing was used to examine the microbial community at Dafeng Mine, the Helan Mountains, Ningxia, China. Soil microbial communities were analyzed with four different materials: 100% straw, 50% straw–50% coconut, and 100% coconut vegetation blanket types, and a bare ground control (CK). The results showed that the contents of soil total nitrogen (TN), available potassium (AP), urease, and catalase were significantly increased in different types of vegetation blankets. High‐throughput sequencing showed that the straw vegetation blanket increased bacterial diversity, while the coconut vegetation blanket increased fungal diversity. The main influencing factors of the dominant bacterial phylum were total nitrogen, catalase, urease, protease, soil water content (WC), soil organic carbon (SOC), and electrical conductivity (EC). The main influencing factor of the dominant fungal phylum was soil water content. These results show that compared with straw vegetation blankets, coconut, and straw–coconut vegetation blanket mulches are more likely to improve soil physicochemical properties, increase the diversity and abundance of soil microorganisms and improve the structural composition of the community, thus improving the soil environment in dryland mining areas. However, further research is needed as to which is the more significant environmental improvement, coconut or straw–coconut vegetation blankets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3