A distributed tracing pipeline for improving locality awareness of microservices applications

Author:

Colarusso Carmine1,De Caro Assunta1,Falco Ida1,Goglia Lorenzo1,Zimeo Eugenio1ORCID

Affiliation:

1. Department of Engineering University of Sannio Benevento Italy

Abstract

AbstractThe microservices architectural style aims at improving software maintenance and scalability by decomposing applications into independently deployable components. A common criticism about this style is the risk of increasing response times due to communication, especially with very granular entities. Locality‐aware placement of microservices onto the underlying hardware can contribute to keeping response times low. However, the complex graphs of invocations originating from users' calls largely depend on the specific workload (e.g., the length of an invocation chain could depend on the input parameters). Therefore, many existing approaches are not suitable for modern infrastructures where application components can be dynamically redeployed to take into account user expectations. This paper contributes to overcoming the limitations of static or off‐line techniques by presenting a big data pipeline to dynamically collect tracing data from running applications that are used to identify a given number of microservices groups whose deployment allows keeping low the response times of the most critical operations under a defined workload. The results, obtained in different working conditions and with different infrastructure configurations, are presented and discussed to draw the main considerations about the general problem of defining boundary, granularity, and optimal placement of microservices on the underlying execution environment. In particular, they show that knowing how a specific workload impacts the constituent microservices of an application, helps achieve better performance, by effectively lowering response time (e.g., up to a reduction), through the exploitation of locality‐driven clustering strategies for deploying groups of services.

Funder

Ministero dell'Università e della Ricerca

Publisher

Wiley

Subject

Software

Reference24 articles.

1. MartinFlower.Microservices.https://martinfowler.com/articles/microservices.html2023.

2. A framework for microservices synchronization

3. Actor-Driven Decomposition of Microservices through Multi-level Scalability Assessment

4. https://microservices.io/patterns/observability/distributed‐tracing.html.2023.

5. IntMA: Dynamic Interaction-aware resource allocation for containerized microservices in cloud environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3