The interpretability of the activity signal detection model for wood‐boring pests Semanotus bifasciatus in the larval stage

Author:

Liu Xuanxin12,Chen Zhibo12ORCID,Zhang Haiyan12,Li Juhu12,Jiang Qi3ORCID,Ren Lili3,Luo Youqing3

Affiliation:

1. School of Information Science and Technology Beijing Forestry University Beijing China

2. Engineering Research Center for Forestry‐oriented Intelligent Information Processing of National Forestry and Grassland Administration Beijing China

3. Beijing Key Laboratory for Forest Pest Control Beijing Forestry University Beijing China

Abstract

AbstractBackgroundThe acoustic detection model of activity signals based on deep learning could detect wood‐boring pests accurately and reliably. However, the black‐box characteristics of the deep learning model have limited the credibility of the results and hindered its application. Aiming to address the reliability and interpretability of the model, this paper designed an active interpretable model called Dynamic Acoustic Larvae Prototype Network (DalPNet), which used the prototype to assist model decisions and achieve more flexible model explanation through dynamic feature patch computation.ResultsIn the experiments, the average recognition accuracy of the DalPNet on the simple test set and anti‐noise test set for Semanotus bifasciatus larval activity signals reached 99.3% and 98.5%, respectively. The quantitative evaluation of interpretability was measured by the relative area under the curve (RAUC) and the cumulative slope (CS) of the accuracy change curve in this paper. In the experiments, the RAUC and the CS of DalPNet were 0.2923 and −2.0105, respectively. Additionally, according to the visualization results, the explanation results of DalPNet were more accurate in locating the bite pulses of the larvae and could better focus on multiple bite pulses in one signal, which showed better performance compared to the baseline model.ConclusionThe experimental results demonstrated that the proposed DalPNet had better explanation while ensuring recognition accuracy. In view of that, it could improve the trust of forestry custodians in the activity signals detection model and aid in the practical application of the model in the forestry field. © 2023 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3