Brain volumes and white matter diffusion across the adult lifespan in temporal lobe epilepsy

Author:

Yasuda Clarissa Lin12,Pimentel‐Silva Luciana Ramalho12ORCID,Beltramini Guilherme Coco13,Liu Min4,Machado de Campos Brunno1,Coan Ana Carolina1,Beaulieu Christian4,Cendes Fernando1,Gross Donald William2ORCID

Affiliation:

1. Laboratory of Neuroimaging, Department of Neurology University of Campinas Campinas Brazil

2. Division of Neurology, Department of Medicine University of Alberta Edmonton Alberta Canada

3. Institute of Physics “Gleb Wataghin” University of Campinas Campinas Brazil

4. Department of Biomedical Engineering University of Alberta Edmonton Alberta Canada

Abstract

AbstractObjectiveTypical aging is associated with gradual cognitive decline and changes in brain structure. The observation that cognitive performance in mesial temporal lobe epilepsy (TLE) patients diverges from controls early in life with subsequent decline running in parallel would suggest an initial insult but does not support accelerated decline secondary to seizures. Whether TLE patients demonstrate similar trajectories of age‐related gray (GM) and white matter (WM) changes as compared to healthy controls remains uncertain.Methods3D T1‐weighted and diffusion tensor images were acquired at a single site in 170 TLE patients (aged 23–74 years) with MRI signs of unilateral hippocampal sclerosis (HS, 77 right) and 111 healthy controls (aged 26–80 years). Global brain (GM, WM, total brain, and cerebrospinal fluid) and regional volumes (ipsi‐ and contralateral hippocampi), and fractional anisotropy (FA) of 10 tracts (three portions of corpus callosum, inferior longitudinal, inferior fronto‐occipital and uncinate fasciculi, body of fornix, dorsal and parahippocampal‐cingulum, and corticospinal tract) were compared between groups as a function of age.ResultsThere were significant reductions of global brain and hippocampi volumes (greatest ipsilateral to HS), and FA of all 10 tracts in TLE versus controls. For TLE patients, regression lines run in parallel to those from controls for brain volumes and FA (for all tracts except the parahippocampal‐cingulum and corticospinal tract) versus age across the adult lifespan.InterpretationThese results imply a developmental hindrance occurring earlier in life (likely in childhood/neurodevelopmental stages) rather than accelerated atrophy/degeneration of most brain structures herein analyzed in patients with TLE.

Funder

Canada Research Chairs

Canadian Institutes of Health Research

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3