Auditory neuropathy in mice and humans with Friedreich ataxia

Author:

Rance Gary1ORCID,Carew Peter1,Winata Leon2,Sale Phillip2,Delatycki Martin3,Sly David24

Affiliation:

1. Department of Audiology and Speech Pathology The University of Melbourne Melbourne Victoria Australia

2. Department of Otolaryngology University of Melbourne Melbourne Victoria Australia

3. Victorian Clinical Genetics Services, Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute Melbourne Victoria Australia

4. Ear Science Institute Australia Perth Western Australia Australia

Abstract

ABSTRACTObjectiveRecent studies have found that human Friedreich ataxia patients have dysfunction of transmission in the auditory neural pathways. Here, we characterize hearing deficits in a mouse model of Friedreich ataxia and compare these to a clinical population.MethodsSixteen mice with a C57BL/6 background were evaluated. Eight were YG8Pook/J animals (Friedreich ataxia phenotype) and eight wild‐type mice served as controls. Auditory function was assessed between ages 6 and 12 months using otoacoustic emissions and auditory steady‐state responses. At study end, motor deficit was assessed using Rotorod testing and inner ear tissue was examined. Thirty‐seven individuals with Friedreich ataxia underwent auditory steady‐state evoked potential assessment and response amplitudes were compared with functional hearing ability (speech perception‐in‐noise) and disease status was measured by the Friedreich Ataxia Rating Scale.ResultsThe YG8Pook/J mice showed anatomic and functional abnormality. While otoacoustic emission responses from the cochlear hair cells were mildly affected, auditory steady‐state responses showed exaggerated amplitude reductions as the animals aged with Friedreich ataxia mice showing a 50–60% decrease compared to controls who showed only a 20–25% reduction (F(2,94) = 17.90, p < 0.00). Furthermore, the YG8Pook/J mice had fewer surviving spiral ganglion neurons, indicating greater degeneration of the auditory nerve. Neuronal density was 20–25% lower depending on cochlear region (F(1, 30) = 45.02, p < 0.001). In human participants, auditory steady‐state response amplitudes were correlated with both Consonant–Nucleus–Consonant word scores and Friedreich Ataxia Rating Scale score.InterpretationThis study found degenerative changes in auditory structure and function in YG8Pook/J mice, indicating that auditory measures in these animals may provide a model for testing Friedreich ataxia treatments. In addition, auditory steady‐state response findings in a clinical population suggested that these scalp‐recorded potentials may serve as an objective biomarker for disease progress in affected individuals.

Publisher

Wiley

Subject

Neurology (clinical),General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3