In situ tailoring solid electrolyte interphase of three‐dimensional Li metal electrode for enhanced Coulombic efficiency

Author:

Wang Jiang‐Peng1ORCID,Lang Feng1ORCID,Li Quan1ORCID

Affiliation:

1. Department of Physics The Chinese University of Hong Kong Shatin New Territory China

Abstract

AbstractAlthough three‐dimensional (3D) lithium metal electrode is effective in restricting the Li dendrite growth upon cycling, problems associated with the unstable electrode/electrolyte interphase become more severe due to increased interfacial area that is intrinsic of the 3D structures, being a major cause for the low Columbic efficiency. While building a desirable solid electrolyte interphase (SEI) serves as an effective solution to improve the electrode/electrolyte interfacial stability, the 3D nature of the electrode makes the task challenging. In the present work, we demonstrated the in‐situ formation of SEI on chemically/structurally modified carbon cloth that is used as the 3D host electrode for Li metal. Here we show that ZnS/ZnO nanotube arrays uniformly grown on the carbon cloth served as precursors for the in‐situ formation of Li2S/Li2O/LiZn containing artificial SEI in the first lithiation process. While Li2S and Li2O are preferred components in SEI, the in situ generated Zn functions as a lithiophilic site that guides the uniform lithium deposition upon repeated charging/discharging process. As a result, symmetric cells adopting the O‐, S‐, and Zn‐ modified 3D anode demonstrate significantly improved Coulombic efficiency (99.2% over 400 cycles at 1 mA cm−2/1 mA h cm−2). Furthermore, the Li/ZSONT/CC//LiFePO4 full cell shows a capacity retention of 71% after 4000 cycles at 2C. The present work sheds light on effective design strategies for SEI formation on a 3D electrode host with controllable SEI composition.image

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3