“One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high‐performance sodium‐ion batteries from iron rust

Author:

Chen Yiqing1,Dong Chongrui1,Chen Long1,Fu Chenglong1,Zeng Yubin1,Wang Qin2,Cao Yuliang3ORCID,Chen Zhongxue1ORCID

Affiliation:

1. Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering Wuhan University Wuhan China

2. Hubei WanRun New Energy Technology Co., Ltd. Shiyan China

3. Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences Wuhan University Wuhan China

Abstract

AbstractSodium‐ion battery (SIB) is considered as a revolutionary technology toward large‐scale energy storage applications. Developing cost‐effective cathode material as well as economical synthesis procedure is a key challenge for its commercialization. Herein, we develop a facile and economic strategy to simultaneously remove rust from the surface of carbon steel and achieve porous and hollow spherical Na4Fe3(PO4)2P2O7/C (HS‐NFPP/C). Benefiting from the desirable structure that fastens the electronic/ionic transportation and effectively accommodates the volume expansion/contraction during discharge/charge process, the as‐prepared cathode exhibits outstanding rate capability and ultralong cycle life. An extraordinarily high‐power density of 32.3 kW kg−1 with an ultrahigh capacity retention of 89.7% after 10 000 cycles are achieved. More significantly, the 3 Ah HC||HS‐NFPP/C full battery manifests impressive cycling stability. Therefore, this work provides an economical and sustainable approach for the massive production of high‐performance Na4Fe3(PO4)2P2O7 cathode, which can be potentially commercialized toward SIB applications.image

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3