The influence of SARS‐CoV‐2 infection on expression of drug‐metabolizing enzymes and transporters in a hACE2 murine model

Author:

Deshpande Kiran12,Lange Keith R.3,Stone William B.4,Yohn Christine12,Schlesinger Naomi5,Kagan Leonid12,Auguste Albert J.46,Firestein Bonnie L.3,Brunetti Luigi12ORCID

Affiliation:

1. Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey Piscataway New Jersey USA

2. Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey Piscataway New Jersey USA

3. Department of Cell Biology and Neuroscience, Rutgers The State University of New Jersey Piscataway New Jersey USA

4. Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute Virginia Polytechnic Institute and State University Virginia USA

5. Division of Rheumatology Department of Medicine, Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA

6. Center for Emerging, Zoonotic, and Arthropod‐borne Pathogens Virginia Polytechnic Institute and State University Blacksburg Virginia USA

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection and the resulting Coronavirus disease 2019 emerged in late 2019 and is responsible for significant morbidity and mortality worldwide. A hallmark of severe COVID‐19 is exaggerated systemic inflammation, regarded as a “cytokine storm,” which contributes to the damage of various organs, primarily the lungs. The inflammation associated with some viral illnesses is known to alter the expression of drug‐metabolizing enzymes and transporters. These alterations can lead to modifications in drug exposure and the processing of various endogenous compounds. Here, we provide evidence to support changes in the mitochondrial ribonucleic acid expression of a subset of drug transporters (84 transporters) in the liver, kidneys, and lungs and metabolizing enzymes (84 enzymes) in the liver in a humanized angiotensin‐converting enzyme 2 receptor mouse model. Specifically, three drug transporters (Abca3, Slc7a8, Tap1) and the pro‐inflammatory cytokine IL‐6 were upregulated in the lungs of SARS‐CoV‐2 infected mice. We also found significant downregulation of drug transporters responsible for the movement of xenobiotics in the liver and kidney. Additionally, expression of cytochrome P‐450 2f2 which is known to metabolize some pulmonary toxicants, was significantly decreased in the liver of infected mice. The significance of these findings requires further exploration. Our results suggest that further research should emphasize altered drug disposition when investigating therapeutic compounds, whether re‐purposed or new chemical entities, in other animal models and ultimately in individuals infected with SARS‐CoV‐2. Moreover, the influence and impact of these changes on the processing of endogenous compounds also require further investigation.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3