Deep learning‐accelerated multiscale approach for granular material modeling

Author:

Guan Qingzheng1ORCID,Yang Zhongxuan2ORCID,Guo Ning3ORCID,Chen Lifan3

Affiliation:

1. Department of Civil Engineering Center for Balance Architecture Zhejiang University Hangzhou China

2. ZJU‐ZCCC Institute of Collaborative Innovation Center for Balance Architecture Computing Center for Geotechnical Engineering (COMEGE) Zhejiang University Hangzhou China

3. Department of Civil Engineering Zhejiang University Hangzhou China

Abstract

AbstractThe hierarchical finite element method (FEM)–discrete element method (DEM) multiscale approach is a powerful tool for solving geotechnical boundary value problems. However, despite parallel computing can be resorted to, the high computational cost remains an insurmountable barrier to its practical application in engineering‐scale problems. As an alternative, a deep learning model (DLM) is employed to replace the representative volume element (RVE) in the DEM. The complex constitutive responses of sand under various loading paths can be reproduced by leveraging the powerful learning capacity of the DLM. During the numerical computations, the DLM is integrated into the Gauss integration points of the FEM mesh, where it receives strains as input and returns the prediction of stresses to advance the calculation. The applicability and accuracy of the approach were examined with three BVPs, in which the sources of error for both global and local performances were systematically analyzed. The feasibility of the approach in accounting for the inherent anisotropy of sand was also investigated. The results demonstrated that the incorporation of the DLM can achieve a significant computational acceleration of up to two orders of magnitude while maintaining a high degree of accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3