The aggregation behaviors of organic radicals in polar fluorinated arenes

Author:

Liu Shan12,Yang Yin1,Liu Tianfei1ORCID

Affiliation:

1. State Key Laboratory of Elemento‐organic Chemistry College of Chemistry Nankai University Tianjin China

2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin China

Abstract

AbstractPolar fluorinated arenes can promote organic free radical reactions, which have attracted scientists’ interest in recent years. However, it is still unknown how these solvents interact weakly with organic radical molecules to influence their reactivity. In this study, we investigated how organic free radicals aggregate in five polar fluorocarbon solvents, and demonstrated that different substituents can influence their aggregation behaviors. In these solvents, small organic radicals with simple substituents maintain a homogeneous solution; however, radicals with substituents that form intermolecular hydrogen bonds or with long‐chain aliphatic hydrocarbons tend to aggregate in them, whereas substituents of long‐chain aliphatic hydrocarbons tend to promote aggregation better. The critical aggregation concentrations of these aggregates are measured by concentration‐dependent UV–visible spectroscopy. Their topological morphologies are all spherical based on TEM. The compactness and rotational motivation speed of radical molecules within these aggregates are determined by EPR spectroscopy. The particle sizes of these aggregates are determined by analyzing their cyclic voltammograms. Most excitingly, electrochemical experiments reveal that the aggregation behaviors of free radical molecules with intermolecular hydrogen bonds can significantly increase their catalytic rate for electro‐oxidizing benzyl alcohol in such a solvent. The results of this study indicate that in polar fluorinated arenes organic radical molecules’ aggregation behaviors are related to their structures. This may provide guidelines for regulating organic radical reactivity in these solvents in the future.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3