Facile Synthesis of β‐Brominated Manganese Porphyrins and their Catalytic Potentials for Haloperoxidases‐Like Activity

Author:

Maurya Mannar R.1ORCID,Prakash Ved1,Avecilla Fernando2,Sankar Muniappan1ORCID

Affiliation:

1. Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India

2. Universidade da Coruña, Grupo NanoToxGen Centro Interdisciplinar de Química y Biología (CICA) Departamento de Química, Facultade de Ciencias Campus de A Coruna 15071 A Coruna Spain

Abstract

AbstractA novel and sustainable approach has been developed for the synthesis of β‐brominated Mn porphyrins, [MnIII(Br)(TPPBr4)] (2), [MnIII(Br)(TPPBr6)] (3) and [MnIV(Br)2(TPPBr8)] (4) by self catalytic haloperoxidase mimicking activity of [MnIII(Br)(TPP)] [bromo(meso‐tetraphenylporphyrinato)manganese(III)] (1) in aqueous medium under different mild and controlled reaction conditions. By precisely tweaking important parameters (e. g. H2O2, HClO4 and KBr), these polybrominated porphyrin complexes have been synthesized. This method is safer and applicable under milder reaction conditions than the conventional procedures for β‐bromination of porphyrins. These complexes were characterized by various spectroscopic techniques, including UV–Vis spectroscopy, elemental analysis, MALDI‐TOF mass spectrometry, cyclic voltammetry, DFT calculations and single crystal X‐ray diffraction analysis. Bromination of various phenol derivatives via haloperoxidase‐catalyzed reaction using these manganese complexes has been explored. Carrying out the catalytic reaction at room temperature in the presence of H2O2 as an oxidant and KBr as a brominating agent in a mild aqueous acidic condition results in good to excellent yield of the brominated product(s). Extra stability of 4 compared to other catalysts due to trans‐[Br−MnIV−Br] structure possibly prevents the interaction of Mn with oxidant which makes it less potential catalyst compared to 1, 2 and 3. Suitable catalytic reaction mechanism has been proposed for the bromination of substrates after identifying the reaction intermediates using mass spectrometry.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3