Dioxygen Reduction in Acetonitrile with Copper Pyridylalkylamine Complexes: The Influence of Acid Strength on the Catalytic Performance

Author:

Langerman Michiel1,van Dorth Micha1,Hetterscheid Dennis G. H.1ORCID

Affiliation:

1. Leiden University Faculty of Science Leiden Institute of Chemistry Leiden Netherlands

Abstract

AbstractThe pyridylalkylamine copper complex [Cu(tmpa)(L)]2+ has previously been proposed to reduce dioxygen via a dinuclear resting state, based on experiments in organic aprotic solvents using chemical reductants. Conversely, a mononuclear reaction mechanism was observed under electrochemical conditions in a neutral aqueous solution. We have investigated the electrochemical oxygen and hydrogen peroxide reduction reaction catalyzed by [Cu(tmpa)(L)]2+ in acetonitrile, using several different acids over a range of pKa. We demonstrate that strong acids lead to the loss of redox reversibility and to the destabilization of the copper complex under non‐catalytic conditions. Under milder conditions, the electrochemical oxygen reduction reaction (ORR) was shown to proceed via a mononuclear catalytic intermediate, similar to what we have previously observed in water. However, in acetonitrile the catalytic rate constants of the ORR are dramatically lower by a factor 105, which is caused by the unfavorable equilibrium of formation of [CuII(O2)(tmpa)]+ in acetonitrile. This results in higher catalytic rates for the reduction of hydrogen peroxide than for the ORR.

Publisher

Wiley

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3