A Thermoresponsive Lead‐Free Organic‐Inorganic Hybrid Perovskite as a Dielectric Switch

Author:

Ou-yang Yuliang1,Li Lutao1,Wang Chen1,Zou Guifu2,Huang Chao-Ran3

Affiliation:

1. Soochow University College of Energy CHINA

2. Soochow University Department of Energy 688 Moye Rd. 215000 Suzhou CHINA

3. Soochow University College of Energy moye road 688 21500 suzhou CHINA

Abstract

Thermochromic perovskites, renowned for their tunable bandgap, high absorption coefficient, and reversible color changes, emerge as promising candidates for applications in smart windows. These advancements not only have the potential to enhance occupant comfort but also contribute significantly to reducing energy consumption in buildings. Here, we present a two‐dimensional lead‐free organic‐inorganic hybrid perovskite [Cyclobutylammonium]2CuCl4 which shows phase transitions from C2/c to P21/c to P21/c space group at 319.5 K and 348.8 K, respectively. Accompanying these transitions is a fascinating, reversible phase structure‐dependent thermochromic behavior, manifesting as a vibrant sequence from yellow to brown to slightly dark brown. Most importantly, the demonstrated ability to switch stably between high and low dielectric states indicates the enormous potential of this material as a dielectric switch. This non‐toxic thermoresponsive perovskite, characterized by its appropriate transition temperatures, reversible phase structure‐dependent thermochromism, and stable dielectric switching behavior, is expected to generate significant interest within the fields of thermoresponsive and dielectric switching materials. The integration of these features not only positions this perovskite as a noteworthy subject of scientific inquiry but also opens avenues for practical applications in diverse fields.

Publisher

Wiley

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3