Affiliation:
1. Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
Abstract
AbstractThe spin‐crossover (SCO) and charge‐transfer (CT) phenomena, the switching processes between two distinguishable magnetic states, are promising for developing materials capable of sophisticated memory and sensing functionalities. The majority of SCO systems are based on iron(II) complexes. However, cobalt(II)‐2,2′:6′,2′′‐terpyridine (terpy) systems emerge as a promising alternative. In this work, new complex salts [CoII(terpy)2]2[MoIV(CN)8] ⋅ 15H2O, Co2Mo(H2O), and [CoII(terpy)2]3[WV(CN)8]2 ⋅ 12H2O, Co3W2(H2O) were synthesized and physiochemically characterized. Structural studies for both compounds revealed [Co(terpy)2]2+ layers pillared by octacyanidometallate anions and completed with water molecules between them. Magnetic studies confirmed that the (de)solvated phases of both complexes exhibit partial SCO on the cobalt(II) centers: CoII−LS (SCo(II)‐LS=1/2)↔CoII−HS (SCo(II)‐HS=3/2). Moreover, handling dehydrated samples in a high‐humidity environment leads to partial recovery of previous magnetic properties via humidity‐induced SCO for Co2Mo: CoII−HS→CoII−LS, and the new phenomenon of isothermal humidity‐activated charge‐transfer‐induced spin transition, which we define here as HACTIST, for Co3W2: CoII−HS⋅⋅⋅WV (SCo(II)‐HS=3/2 and SW(V)=1/2)→CoIII−LS⋅⋅⋅WIV (SW(IV)=0 and SCo(III)‐LS=0). These comprehensive studies shed light on the water‐solvation‐dependent spin transitions in Co(II)‐octacyanidometallate(IV/V) complexes.
Funder
University of Tokyo
Iketani Science and Technology Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献