Experimental Investigation of Pure Spinel Mn3O4 Properties Synthesized through Chemical Spray Pyrolysis for Future Gas Sensor Application

Author:

Doubi Youssef12ORCID,Hartiti Bouchaib1,Siadat Maryam2,Labrim Hicham3,Fadili Salah1,Tahri Mounia4,Stitou Mohamed1,Thevenin Philippe5,Losson Etienne2

Affiliation:

1. LVOBEEN laboratory, MEEM & DD Group Hassan II University of Casablanca FSTM BP 146 20650 Mohammedia Morocco

2. LCOMS laboratory University of Lorraine Metz France

3. Advanced Systems Engineering Laboratory National School of Applied Sciences Ibn Tofaîl University Kenitra Morocco

4. DERS, CNESTEN Rabat Morocco

5. LMOPS laboratory University of Lorraine Metz France

Abstract

AbstractThe semiconductor realization is a very significant stage in gas sensor application. Herein, the Mn3O4 semiconductor was deposited using chemical spray pyrolysis. The effect of deposition temperature on structural, vibrational optical and electrical Mn3O4 thin layers properties were investigated through: X‐ray diffraction, Raman spectroscopy, UV‐visible spectrophotometer, and two points electrometers respectively. The X‐ray diffraction showed the appearance of spinel phase of tetragonal Mn3O4 with strong formation direction along (101) plan and without any secondary phase indicating the formation of pure Mn3O4. The Raman spectroscopy confirmed the results obtained in XRD and certified the high‐quality formation of Mn3O4. In addition, the crystallinity improvement (the increase of crystallite size and the decrease of dislocation density) was caused by the increasing of deposition temperature from 350 °C to 450 °C. Optical properties such as transmittance, absorbance and band gap energy were extracted by UV‐Visible spectrophotometer. Thus, low transmittance, high absorbance and small band gap energy were observed at the highest substrate temperature (450 °C). The electrical conductivity showed good values between 4.83 and 13.89 mS.cm−1. These properties make Mn3O4 an appropriate material to be used as a sensitive layer in gas sensors applications.

Publisher

Wiley

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3