Affiliation:
1. Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Pilani Rajasthan India
2. School of Applied and Interdisciplinary Sciences (SAIS) Indian Association for the Cultivation of Science (IACS) Jadavpur 700032 Kolkata India
3. Research Institute for Sustainable Energy (RISE) Center for Research and Education in Science and Technology (TCG-CREST) Salt Lake 700091 Kolkata India
Abstract
AbstractZinc(II) Schiff base complexes with different substituents at 5, 5’ positions have been synthesized to study the effect of the electronic environment of the metal towards the cycloaddition reaction between CO2 and epoxide. The complexes have been characterized by FT‐IR, XPS, NMR, electronic spectroscopy, LC–MS, and TGA. We have used density functional theory to study the electronic structure of the Zn(II) complexes and modelled the electronic spectra and the mechanism of catalysis. Results obtained from DFT and LC–MS indicate the dimeric structures for all the complexes except ZnL4. The monomeric ZnL4 has the strongest electron withdrawing group, i. e., −NO2 at 5, 5’ positions along with two labile water molecules attached to the Zn center. The dimeric complexes exhibit good to moderate yield for cycloaddition reaction to styrene carbonate under solvent‐free conditions and a relatively low reaction temperature of 80 °C, with CO2 pressure of ~1 atm. The best yield has been achieved by ZnL4. Different rate‐determining steps are captured by the DFT studies for dimeric and monomeric complexes. Without taking any preventing measure of dimerization by attaching the bulky tBu groups, relatively lesser catalytic amounts of all the complexes have shown yields of cyclic carbonate between 53–74 %, depending on the nature of the substituent present.
Funder
Department of Chemistry, University of York
Birla Institute of Technology and Science, Pilani
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献