Chemoinformatic modelling of the antioxidant activity of phenolic compounds

Author:

Idrovo‐Encalada Alondra M1,Rojas Ana M1,Fissore Eliana N1ORCID,Tripaldi Piercosimo2,Pis Diez Reinaldo3ORCID,Rojas Cristian2ORCID

Affiliation:

1. Departamento de Industrias – ITAPROQ (CONICET, UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA), Ciudad Universitaria Ciudad de Buenos Aires Argentina

2. Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología Universidad del Azuay Cuenca Ecuador

3. CEQUINOR, Centro de Química Inorgánica (CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) La Plata Argentina

Abstract

AbstractBACKGROUNDAntioxidants are chemicals used to protect foods from deterioration by neutralizing free radicals and inhibiting the oxidative process. One approach to investigate the antioxidant activity is to develop quantitative structure–activity relationships (QSARs).RESULTSA curated database of 165 structurally heterogeneous phenolic compounds with the Trolox equivalent antioxidant capacity (TEAC) was developed. Molecular geometries were optimized by means of the GFN2‐xTB semiempirical method and diverse molecular descriptors were obtained afterwards. For model development, V‐WSP unsupervised variable reduction was used before performing the genetic algorithms–variable subset selection (GAs‐VSS) to construct the best five‐descriptor multiple linear regression model. The coefficient of determination and the root mean square error were used to measure the performance in calibration (R2 = 0.789 and RMSEC = 0.381), and test set prediction (Q2 = 0.748 and RMSEP = 0.416), along several cross‐validation criteria. To thoroughly understand the TEAC prediction, a fully explained mechanism of action of the descriptors is provided. In addition, the applicability domain of the model defined a theoretical chemical space for reliable predictions of new phenolic compounds.CONCLUSIONThis in silico model conforms to the five principles stated by the Organisation for Economic Co‐operation and Development. The model might be useful for virtual screening of the antioxidant chemical space and for identifying the most potent molecules related to an experimental measurement of TEAC activity. In addition, the model could assist chemists working on computer‐aided drug design for the synthesis of new targets with improved activity and potential uses in food science. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IN SILICO PREDICTION OF POTENTIAL DERMATOLOGICAL EFFECTS OF A SYNTHETIC ANTIOXIDANT;Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії;2024-05-20

2. Phytochemical Analysis and Antioxidant Effects of Prunella vulgaris in Experimental Acute Inflammation;International Journal of Molecular Sciences;2024-04-29

3. Computational prediction of retention times of veterinary antibiotics obtained by liquid chromatography‐mass spectrometry;Journal of the Science of Food and Agriculture;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3