Research on the lubrication performance of circular tilting pad thrust bearings for large wind turbines

Author:

Wang Jianlei1ORCID,Cao Yang1ORCID,Sun Wenye1,Chen Runlin1,Jia Qian2,Cui Yahui1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering Xi'an University of Technology Xi'an China

2. Department of Mechanical Engineering Xi'an Jiao tong University City College Xi'an China

Abstract

AbstractIn view of the large temperature rise and impact load of thrust bearings in the main shaft system of large wind turbines, this article takes the circular tilting pad thrust bearings in large wind turbines as the research object, and analyses the basic theory of bearing lubrication. The lubrication performance calculation model established for this bearing includes the Reynolds equation, energy equation, film thickness equation, and elastic deformation equation. Theoretically analysing and calculating the lubrication performance of the circular tilting pad thrust bearing, the key performance parameters have identified such as minimum film thickness (hmin), temperature rise (ΔT), power consumption (W), and flow rate (Q). The calculation results show that the eccentricity ratio has a significant impact on the lubrication performance of the circular tilting pad thrust bearing. When both radial and circumferential eccentricity ratios are around 0.5, the bearing exhibits a high temperature rise, leading to a potential risk of bearing burnout. The results also show that at a radial eccentricity ratio of approximately 0.54, the minimum film thickness reaches its maximum value of 10.34 μm. Similarly, at a circumferential eccentricity ratio of about 0.60, the minimum film thickness reaches its peak value of 21.89 μm. This indicates that the eccentricity ratio plays a crucial role in the lubrication performance. In addition, the lubrication performance of the bearing under varying loads has been calculated at a speed of 9.5 r/min. The results demonstrated that the applied load significantly impacts the thrust bearing's performance. The findings elucidate the critical role of considering the eccentricity ratio and operational external load during the bearing design process. This study validates the potential of replacing rolling bearings with sliding bearings in wind turbine main shafts. It also provides a theoretical reference for the future design of sliding bearings.

Publisher

Wiley

Reference16 articles.

1. Research on dynamic characteristics of circular pad thrust bearing;Ma XZ;Tribology,2000

2. Application of PEEK composite materials in sliding bearings;Chenghong Y;Bearing

3. Application of sliding bearings in wind power generation gearboxes;Ji K;Shanxi Metallur,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3