Affiliation:
1. School of Mechanical and Precision Instrument Engineering Xi'an University of Technology Xi'an China
2. Department of Mechanical Engineering Xi'an Jiao tong University City College Xi'an China
Abstract
AbstractIn view of the large temperature rise and impact load of thrust bearings in the main shaft system of large wind turbines, this article takes the circular tilting pad thrust bearings in large wind turbines as the research object, and analyses the basic theory of bearing lubrication. The lubrication performance calculation model established for this bearing includes the Reynolds equation, energy equation, film thickness equation, and elastic deformation equation. Theoretically analysing and calculating the lubrication performance of the circular tilting pad thrust bearing, the key performance parameters have identified such as minimum film thickness (hmin), temperature rise (ΔT), power consumption (W), and flow rate (Q). The calculation results show that the eccentricity ratio has a significant impact on the lubrication performance of the circular tilting pad thrust bearing. When both radial and circumferential eccentricity ratios are around 0.5, the bearing exhibits a high temperature rise, leading to a potential risk of bearing burnout. The results also show that at a radial eccentricity ratio of approximately 0.54, the minimum film thickness reaches its maximum value of 10.34 μm. Similarly, at a circumferential eccentricity ratio of about 0.60, the minimum film thickness reaches its peak value of 21.89 μm. This indicates that the eccentricity ratio plays a crucial role in the lubrication performance. In addition, the lubrication performance of the bearing under varying loads has been calculated at a speed of 9.5 r/min. The results demonstrated that the applied load significantly impacts the thrust bearing's performance. The findings elucidate the critical role of considering the eccentricity ratio and operational external load during the bearing design process. This study validates the potential of replacing rolling bearings with sliding bearings in wind turbine main shafts. It also provides a theoretical reference for the future design of sliding bearings.
Reference16 articles.
1. Research on dynamic characteristics of circular pad thrust bearing;Ma XZ;Tribology,2000
2. Application of PEEK composite materials in sliding bearings;Chenghong Y;Bearing
3. Application of sliding bearings in wind power generation gearboxes;Ji K;Shanxi Metallur,2017