Cannabinol modulates the endocannabinoid system and shows TRPV1‐mediated anti‐inflammatory properties in human keratinocytes

Author:

Di Meo Camilla12ORCID,Tortolani Daniel1ORCID,Standoli Sara1,Ciaramellano Francesca3,Angelucci Beatrice Clotilde1,Tisi Annamaria2,Kadhim Salam4,Hsu Eric4,Rapino Cinzia1ORCID,Maccarrone Mauro23

Affiliation:

1. Department of Veterinary Medicine University of Teramo Teramo Italy

2. Department of Biotechnological and Applied Clinical Sciences University of L'Aquila L'Aquila Italy

3. European Center for Brain Research (CERC) Santa Lucia Foundation IRCCS Rome Italy

4. InMed Pharmaceuticals Inc. Vancouver BC Canada

Abstract

AbstractCannabinol (CBN) is a secondary metabolite of cannabis whose beneficial activity on inflammatory diseases of human skin has attracted increasing attention. Here, we sought to investigate the possible modulation by CBN of the major elements of the endocannabinoid system (ECS), in both normal and lipopolysaccharide‐inflamed human keratinocytes (HaCaT cells). CBN was found to increase the expression of cannabinoid receptor 1 (CB1) at gene level and that of vanilloid receptor 1 (TRPV1) at protein level, as well as their functional activity. In addition, CBN modulated the metabolism of anandamide (AEA) and 2‐arachidonoylglicerol (2‐AG), by increasing the activities of N‐acyl phosphatidylethanolamines‐specific phospholipase D (NAPE‐PLD) and fatty acid amide hydrolase (FAAH)—the biosynthetic and degradative enzyme of AEA—and that of monoacylglycerol lipase (MAGL), the hydrolytic enzyme of 2‐AG. CBN also affected keratinocyte inflammation by reducing the release of pro‐inflammatory interleukin (IL)‐8, IL‐12, and IL‐31 and increasing the release of anti‐inflammatory IL‐10. Of note, the release of IL‐31 was mediated by TRPV1. Finally, the mitogen‐activated protein kinases (MAPK) signaling pathway was investigated in inflamed keratinocytes, demonstrating a specific modulation of glycogen synthase kinase 3β (GSK3β) upon treatment with CBN, in the presence or not of distinct ECS‐directed drugs. Overall, these results demonstrate that CBN modulates distinct ECS elements and exerts anti‐inflammatory effects—remarkably via TRPV1—in human keratinocytes, thus holding potential for both therapeutic and cosmetic purposes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3