Cystathionine γ‐lyase contributes to exacerbation of periodontal destruction in experimental periodontitis under hyperglycemia

Author:

Song Danni1,He Jiangfeng1,Cheng Tianfan2ORCID,Jin Lijian2,Li Sijin1,Chen Beibei1,Li Yongming1,Liao Chongshan1ORCID

Affiliation:

1. Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics Stomatological Hospital and Dental School Tongji University Shanghai China

2. Division of Periodontology & Implant Dentistry, Faculty of Dentistry The University of Hong Kong Hong Kong SAR Hong Kong

Abstract

AbstractBackgroundDiabetes is one of the major inflammatory comorbidities of periodontitis via 2‐way interactions. Cystathionine γ‐lyase (CTH) is a pivotal endogenous enzyme synthesizing hydrogen sulfide (H2S), and CTH/H2S is crucially implicated in modulating inflammation in various diseases. This study aimed to explore the potential role of CTH in experimental periodontitis under a hyperglycemic condition.MethodsCTH‐silenced and normal human periodontal ligament cells (hPDLCs) were cultured in a high glucose and Porphyromonas gingivalis lipopolysaccharide (P.g‐LPS) condition. The effects of CTH on hPDLCs were assessed by Cell Counting Kit 8 (CCK8), real‐time quantitative polymerase chain reaction (RT‐qPCR), and enzyme‐linked immunosorbent assay (ELISA). The model of experimental periodontitis under hyperglycemia was established on both Cth−/− and wild‐type (WT) mice, and the extent of periodontal destruction was assessed by micro‐CT, histology, RNA‐Seq, Western blot, tartrate‐resistant acid phosphatase (TRAP) staining and immunostaining.ResultsCTH mRNA expression increased in hPDLCs in response to increasing concentration of P.g‐LPS stimulation in a high glucose medium. With reference to WT mice, Cth−/− mice with experimental periodontitis under hyperglycemia exhibited reduced bone loss, decreased leukocyte infiltration and hindered osteoclast formation, along with reduced expression of proinflammatory cytokines interleukin‐6 (IL‐6) and tumor necrosis factor alpha (TNF‐α) in periodontal tissue. RNA‐seq‐enriched altered NF‐κB pathway signaling in healthy murine gingiva with experimental periodontitis mice under hyperglycemia. Accordingly, phosphorylation of p65 (P‐p65) was alleviated in CTH‐silenced hPDLCs, leading to decreased expression of IL6 and TNF. CTH knockdown inhibited activation of nuclear factor kappa‐B (NF‐κB) pathway and decreased production of proinflammatory cytokines under high glucose and P.g‐LPS treatment.ConclusionThe present findings suggest the potential of CTH as a therapeutic target for tackling periodontitis in diabetic patients.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3