Superoxide dismutase 2 scavenges ROS to promote osteogenic differentiation of human periodontal ligament stem cells by regulating Smad3 in alveolar bone‐defective rats

Author:

Qiu Wei1,Sun Qian1,Li Na1,Chen Zehao1,Wu Hongle2,Chen Zhao1,Guo Xiaolan1,Fang Fuchun1

Affiliation:

1. Department of Stomatology Nanfang Hospital Southern Medical University Guangzhou China

2. Department of Endodontics Stomatological Hospital School of Stomatology Southern Medical University Guangzhou China

Abstract

AbstractBackgroundOsteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear.MethodsSeveral surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real‐time quantitative polymerase chain reaction (RT‐qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro‐CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p‐Smad3 in hPDLSCs was detected by RT‐qPCR and Western blotting (WB).ResultsSOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV‐SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p‐Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs.ConclusionSOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Periodontics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3