Study on the aggregation nature of sodium cocoyl glycinate and sodium hyaluronate mixture in aqueous and NaCl solutions

Author:

Wang Yuling1,Guo Jixiang2,Zan Min2,Xu Songtang1,Guo Xueping1,Du Bo1,Xu Hujun2

Affiliation:

1. Research and Development Center Bloomage Biotechnology Co., Ltd. Jinan Shandong China

2. School of Chemical & Material Engineering Jiangnan University Wuxi Jiangsu China

Abstract

AbstractThe mixed system of sodium cocoyl glycinate and sodium hyaluronate (HA) with different mass concentrations and relative molecular weights was investigated by the surface tension method. All the curves of surface tension versus logarithm of concentration (γ‐lgc curves) of sodium cocoyl glycinate‐HA mixed system displayed the properties of double platform. The critical micelle concentration (cmc) of sodium cocoyl glycinate was 1.690 g/L at 25°C. The two inflection points of the γ‐lgc curves corresponding to the cocoyl glycine‐HA mixed system were cac (the critical aggregation concentration) and cmce (the extended cmc of sodium cocoyl glycinate), and cac < cmce < cmc. With the change of the mass concentration and relative molecular weight of HA, the cac values were almost constant. However, cmce increased with the increase of the mass concentration of HA at the same HA molecular weight. For the HA of molecular weight of 800 and 260000 Da, the mass concentration of HA increased from 0.05 to 0.4 g/L, and the cmce value increased from 1.199 to 1.390 g/L and 1.102 to 1.330 g/L, respectively. When the mass concentration of HA remained the same, the change in the relative molecular weight of HA had little effect on the cmce value. For the mixed system of sodium cocoyl glycine −0.1 g/L HA, when the concentration of NaCl was 2 g/L, the salt enhancement effect was dominant. When the concentration of NaCl was 4 to 8 g/L, the salt weakening effect was dominant. It is indicated that HA can improve the chemical properties of sodium cocoyl glycinate at a certain concentration, thus improving the cleaning, foaming, and foam stability of sodium cocoyl glycinate.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3