A systematic derivatization technique for characterization of ethoxylates by GC and GCMS

Author:

Ali Asraf A.1ORCID,Bhat Ganesh1,Al‐Ghamdi Ibrahim1,Cao Wenjie1,Kumar Arun1,Iali Wissam1,Narayan K. C.1,Ghazwani Qasem1

Affiliation:

1. Corporate Technology and Innovation SABIC R&T Riyadh Saudi Arabia

Abstract

AbstractEthoxylation is one of the common industrial process in which ethylene oxide (EO) is added to compounds containing active hydrogen atom (OH, COOH, SH, NH, etc.) to form surfactants. Alcohol ethoxylates are a major class of non‐ionic surfactants composed of an alkyl chain combined with few EO units. They are widely used in homecare products, personal care products, textiles, oilfield, construction, lubricants, food, paper, leather. The analysis of these ethoxylates possess several challenges since they contain ‘n’ number of EO units (n > 1). With increase in “n,” the product becomes more and more viscous and the boiling point increases making it difficult to analyze by normal gas chromatography (GC) technique. This paper describes a method of derivatizing these ethoxylates so that they can be eluted on a high temperature GC. BSTFA (N, O‐bis (trimethylsilyl) trifluoroacetamide) is used as the derivatizing agent (silylating agent). The ethoxylate combines with BSTFA to form the corresponding trimethylsilylated (TMS) product, which have comparatively lower boiling point. Thus, we detect trimethyl silyl product, which is the resemblance for the ethoxylated product. In this paper, we present a quantitative GC method for the ethoxylates of a few simple alcohols (2‐ethyl hexanol, glycerin), and complex vegetable oils (castor oil). The products formed during the reaction have also been identified on a gas chromatograph coupled with mass spectrometer (GCMS). GCMS shows the mass corresponding to the TMS derivatized product. The derivatization technique not only helps in increasing the volatility of these compounds but also improves the chromatographic efficiency, selectivity, and enhances the detectability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3