Study of binary mixtures of Tribulus terrestris extract and Quillaja bark saponin as oil‐in‐water nanoemulsion emulsifiers

Author:

Schreiner Tatiana B.1234,Santamaria‐Echart Arantzazu12,Peres António M.12,Dias Madalena M.34,Pinho Simão P.12,Barreiro Maria Filomena12ORCID

Affiliation:

1. Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança Bragança Portugal

2. Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (LA SusTEC) Instituto Politécnico de Bragança Bragança Portugal

3. Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE‐LCM), Department of Chemical Engineering Faculty of Engineering University of Porto Porto Portugal

4. Associate Laboratory in Chemical Engineering (ALiCE), Faculdade de Engenharia Universidade do Porto Porto Portugal

Abstract

AbstractSeveral industrial fields use emulsifiers in their products, with the ones of natural origin gaining increasing relevance. Identifying and using diversified sources for their extraction is a pertinent topic regarding sustainability principles, biodiversity preservation, or cost rationalization. This is the case of Quillaja bark saponin (QS), for which saponin‐rich extracts, for example, Tribulus terrestris (TT), are being highlighted as viable alternatives, even though constraints like performance are still on the table. In this context, an experimental design using binary emulsifier mixtures of TT with pure QS was carried out by changing their composition (50–90%wt. TT), content (1.5–4.5%wt.), and high‐pressure homogenization conditions (5–15 cycles). The emulsions were characterized by zeta potential, morphology, droplet size, and stability (expressed as the number of days without creaming formation). Moreover, the cream index for 30 days was determined to indicate the destabilization extent. The zeta potential showed stable emulsions (values below −41 mV); even still, creaming formed for samples using a low emulsifier and high TT contents. The emulsions' mean droplet diameter (D [3, 2]) was between 78 and 921 nm, with smaller sizes agreeing with higher stability. The statistical analysis indicated an optimum composition range comprising an emulsifier content between 3.9 and 4.5%wt. and TT content between 50 and 56%wt. to reach stable products. Overall, TT can provide an effective solution when combined with QS, decreasing the dependence on Quillaja bark.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Surfaces, Coatings and Films,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3