Spray‐dried immobilized lipase from Staphylococcus aureusHA25 for application in detergent industry

Author:

Nadaroglu Hayrunnisa12ORCID,Baran Alper23ORCID,Bayrakceken Hatice24ORCID

Affiliation:

1. Department of Food Technology Vocational School of Technical Sciences, Ataturk University Erzurum Turkey

2. Department of Nano‐Science and Nano‐Engineering Institute of Science and Technology, Ataturk University Erzurum Turkey

3. Department of Veterinary Public Health, Faculty of Veterinary Medicine Ataturk University Erzurum Turkey

4. Department of Chemical Engineering, Faculty of Engineering Atatürk University Erzurum Turkey

Abstract

AbstractThis study aims to produce an active lipase detergent additive dry powder using spray drying. Staphylococcus aureus HA25, growing at a pH range of 5.0–8.5, was isolated from Erzurum gogermis cheese and purified using a three‐phase partitioning technique. Optimal immobilization processing conditions were determined for 0.1% wt/wt chitosan, alginate, and chitosan/alginate concentrations of pure lipase enzyme. Morphological features of the immobilized enzyme structure were determined using scanning electron microscopy (SEM) analysis, and structural characterizations were determined using x‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis. The results showed that the natural structure of the lipase was largely restored upon reconstitution of the spray‐dried immobilized lipase structures in water. While the free enzyme removed 52.6% of the oil added to the cotton fabric, the immobilized lipase@alginate enzyme removed ~98% of the oil added to the cotton fabric at the highest rate when used as a detergent additive. It was found that the reusability activity of chitosan@lipase, alginate@lipase, and chitosan/alginate@lipase enzymes remained at 86.4%, 92.8%, and 88.6% of their original activity, respectively. The study suggests that immobilized variations of the lipase enzyme within chitosan, alginate, and chitosan/alginate matrices may serve as a natural, secure, and efficient substitute for conventional chemical detergents, offering a non‐toxic alternative for additive materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3