Synthesis, characterization, and corrosion protection potential of a highly effective and water‐miscible surfactant for mild steel in sulfuric acid solution

Author:

Yaagoob Ibrahim Y.1,Goni Lipiar K. M. O.1,Mazumder Mohammad A. J.12,Verma Chandrabhan3ORCID,Ali Shaikh A.12,Alfantazi Akram3

Affiliation:

1. Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia

2. Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia

3. Department of Chemical Engineering Khalifa University of Science and Technology Abu Dhabi United Arab Emirates

Abstract

AbstractIn the current study, a tetracationic quaternary ammonium salt (TCQAC) was synthesized and characterized and its ability to suppress corrosion on mild steel (MS) in a 0.5 M H2SO4 solution was examined. Various chemical, electrochemical, and surface characterization techniques were utilized to study the inhibition efficiency of TCQAC. The TCQAC manifests 99.83% efficiency at 20 ppm concentration. Out of all the examined isotherm models, the Langmuir isotherm offered the best fit for the TCQAC adsorption on the MS surface. A very high negative value of ΔGads (−45.18 kJ mol−1) suggests that the adsorption of TCQAC followed the chemisorption mechanism. Electrochemical studies indicate that TCQAC increases the linear and charge transfer resistances (LPR and Rct, respectively). TCQAC slows down the anodic and cathodic Tafel reactions; however, it acts as an anodic‐type inhibitor at 5, 10, and 20 ppm. The appearance of extra Cl and N signals in the energy dispersive x‐ray (EDX) spectrum and an improvement in surface smoothness in the scanning electron microscope (SEM) image of the inhibited sample corroborated the adsorption method of corrosion inhibition. X‐ray photoelectron spectroscopy (XPS) study indicates that TCQAC creates corrosion preventive layers by chemical adsorption. In Frontier molecular orbitals (FMOs), highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were delocalized around the central part that comprises two benzyls, four allyls, and one hydrocarbon ((CH2)6) moieties and two quaternary nitrogen atoms. The outcomes of XPS and density functional theory (DFT) analyses indicate that the chemisorption of TCQAC occurs by dπ–pπ bonding with the surface iron atoms. The π‐electrons of aryl and allyl moieties extensively participate in the bonding.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3