Elemental and statistical analysis of small individual urinary stones using TXRF spectrometry

Author:

Shaltout Abdallah A.1ORCID,Abd‐Elkader Omar H.2ORCID,Lassen Petra3,Fittschen Ursula A. E.3ORCID

Affiliation:

1. Spectroscopy Department, Physics Research Institute National Research Centre Cairo Egypt

2. Physics & Astronomy Department, College of Science King Saud University Riyadh Saudi Arabia

3. Institute of inorganic and Analytical Chemistry Clausthal University of Technology Clausthal‐Zellerfeld Germany

Abstract

AbstractDue to the small quantity of most of the extracted human urinary stone samples, there is an urgent need for an analytical technique that is able to perform a multi‐elemental quantitative analysis for a small fraction of these samples. In the present work, a few milligrams of different types of urinary stones were microwave digested in ultra‐pure nitric acid, and the elemental determination was achieved by total reflection X‐ray fluorescence (TXRF). The elements P, S, Ca, Fe, Cu, Zn, Se, and Sr were detected in most of the different stones. However, the trace elements: K, Ti, V, Cr, Mn, Ni, As, Pb, and U were also found in a certain number of samples. Furthermore, inductively coupled plasma optical emission spectrometry (ICP‐OES) was used and the elements Mg, Ti, Mn, Cu, Zn, and Cd were determined. A good agreement between the results of TXRF and ICP‐OES was obtained with respect to the elements Ti, Mn, Cu, and Zn. Cadmium and magnesium were only determined by ICP‐OES. More attention was given to the existence and the spectral interference of As‐Kα and Pb‐Lα as well as As‐Kβ and Br‐Kα in a limited number of urinary stones. Based on the analysis of variance and Pearson's correlation analysis, an additional statistical analysis study was performed in terms of quantified elements and the types of urinary stones. Calcium has a remarkable positive correction with Ni, Zn, and P, whereas a negative correlation was found with K, S, and Cu. Based on the hierarchical cluster analysis, the square Euclidean showed four main groups of urinary stones starting with high to trace amounts of calcium oxalate. Furthermore, the squared Euclidean showed further subgroups of the urinary stones. The role of certain elements in terms of forming or inhabiting the urinary stone formation was discussed. Uranium was determined in a limited number of urinary stones using TXRF and ICP‐OES. The origin of the uranium may be the drinking and groundwater. Uranium could be accumulated in the urinary stones from these sources. In addition, the divalent uranium compounds can deposit on the surface of hydroxyapatite crystal, which is one of the main compounds in the urinary stones.

Funder

King Saud University

Publisher

Wiley

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3