NNPEC: Neighborhood node propagation entropy centrality is a unique way to find the influential node in a complex network

Author:

Chakravarthy Thota Seshu1ORCID,Selvaraj Lokesh2

Affiliation:

1. Information and Communication Engineering Anna University Chennai India

2. Department of Computer Science and Engineering PSG Institute of Technology and Applied Research Coimbatore India

Abstract

SummaryIn complicated networks, it is still difficult to determine which nodes are influential. To increase the accuracy for identifying influential nodes (IN), several measures have been undertaken in complex networks (CN). Reviewing the research on network attacks, information distribution, and pandemic spread require identifying effective INs. As a result, determining INs in complicated networks has attracted more and more attention toward researchers. Various approaches have been proposed in recent years, each with pros and cons. The development of algorithms to study static social networks has been the focus of previous research. However, social networks are dynamic networks that change over time and are not static. The impact of source localization is generally weak since most existing approaches do not fully exploit the infection of neighboring information in nodes. This research proposes a novel Neighborhood Node Propagation Entropy Centrality (NNPEC) technique for finding the INs in CNs. This technique also helps to identify the neighborhood node entropy and determines each node's ability to spread among uninfected neighboring nodes. The proposed strategy is applied to six different datasets from different domains, including C‐Elegance, Dolphins, Facebook, Gowalla, Karate, and USA Power Grid. Some of the performance evaluations, like maximum degree (MD), average degree (AD), number of nodes, edges and cluster coefficient (CC), are analyzed and compared with different existing algorithms. In the experimental section, a proposed method obtained an MD of 16.66, CC of 0.564, AD of 3.92, edges of 76 and nodes of 33 for the karate dataset. Also, some other existing techniques are compared to prove the efficiency of the proposed method.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3