Improving the tracking and erosion resistance of silicone rubber using Fe2O3 and platinum catalyst

Author:

Shang Ruiqi1,Cheng Fangzheng1,Wang Liming1,Mei Hongwei1,Yin Fanghui1ORCID,Farzaneh Masoud2

Affiliation:

1. Laboratory of Advanced Technologies of Electrical Engineering and Energy, Shenzhen International Graduate School Tsinghua University Beijing Guangdong People's Republic of China

2. Department of Applied Science University of Quebec at Chicoutimi Chicoutimi Quebec Canada

Abstract

AbstractIn typical HTV silicone rubber for composite insulators subjected to a 4.5 kV inclined plane (IP) test, alumina trihydrate loading exceeds 40 wt%, which limits the rubber content and weakens the antiaging properties. This study compares two methods for enhancing tracking and erosion resistance while reducing ATH content to meet IP test requirements. Increasing Fe2O3 content from 1.5 wt% to 3 wt% promotes the formation of mullite. The formed ceramic layer isolates heat and oxygen and hence facilitates the specimen to pass the IP tests with less content of ATH. By contrast, Pt/NS system cannot suppress the tracking efficiently by forming the SiOC ceramics at high ATH loading. The decomposition of ATH will generate water vapor and lead to holes in the surface. Both moisture and oxygen absorbed have a detrimental effect on the suppression mechanism of the Pt/NS system. Consequently, it is recommended that the content of Fe2O3 can be increased slightly to lower the ATH content in the traditional HTV SiR formula used for the composite insulator. Besides, when the content of ATH is relatively high, the use of the Pt/NS system is not recommended.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3