Effect and molecular mechanism of Sulforaphane alleviates brain damage caused by acute carbon monoxide poisoning:Network pharmacology analysis, molecular docking, and experimental evidence

Author:

Yue Ao‐Chun12,Zhou Xu‐Dong3,Song Hui‐Ping3,Liu Xu‐Han1,Bi Ming‐Jun4,Han Wei1,Li Qin1ORCID

Affiliation:

1. Emergency Department Shenzhen University General Hospital Shenzhen People's Republic of China

2. Centre of Integrated Chinese and Western Medicine, School of Clinical Medicine, Qingdao University Qingdao People's Republic of China

3. First Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan People's Republic of China

4. Physical Examination Centre, Yuhuangding Hospital Affiliated to Qingdao University Yantai People's Republic of China

Abstract

AbstractSulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti‐inflammatory, and anti‐apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug–disease targets, which were strongly in connection with autophagy–animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP‐activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P‐AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.

Funder

National Natural Science Foundation of China

Sanming Project of Medicine in Shenzen Municipality

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3