Perinatal exposure to bisphenol A impairs cognitive function via the gamma‐aminobutyric acid signaling pathway in male rat offspring

Author:

Guo Yi1,Kang Yuxin1,Bai Wenjie1,Liu Qiling1,Zhang Rongqiang1,Wang Yuxin1,Wang Chong2ORCID

Affiliation:

1. College of Health Public Shaanxi University of Chinese Medicine Xianyang Shaanxi China

2. Medical Experiment Center Shaanxi University of Chinese Medicine Xianyang Shaanxi China

Abstract

AbstractBisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma‐aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three‐week‐old male rat offspring were selected for an open‐field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real‐time polymerase chain reaction (RT‐PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA‐T) and GABA transporter 1 (GAT‐1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.

Funder

Shaanxi University of Chinese Medicine

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3