A transformative shift toward blockchain‐based IoT environments: Consensus, smart contracts, and future directions

Author:

Trivedi Chandan12,Rao Udai Pratap3,Parmar Keyur2,Bhattacharya Pronaya4,Tanwar Sudeep1ORCID,Sharma Ravi5

Affiliation:

1. Department of Computer Science and Engineering Institute of Technology, Nirma University Ahmedabad Gujarat India

2. Department of Computer Science and Engineering Sardar Vallabhbhai National Institute of Technology Surat Gujarat India

3. Department of Computer Science and Engineering National Institute of Technology Patna India

4. Department of Computer Science and Engineering and Research and Innovation Cell, Amity School of Engineering and Technology Amity University Kolkata West Bengal India

5. Centre for Inter‐Disciplinary Research and Innovation University of Petroleum and Energy Studies Dehradun India

Abstract

AbstractRecently, Internet‐of‐Things (IoT) based applications have shifted from centralized infrastructures to decentralized ecosystems, owing to user data's security and privacy limitations. The shift has opened new doors for intruders to launch distributed attacks in diverse IoT scenarios that jeopardize the application environments. Moreover, as heterogeneous and autonomous networks communicate, the attacks intensify, which justifies the requirement of trust as a key policy. Recently, blockchain‐based IoT solutions have been proposed that address trust limitations by maintaining data consistency, immutability, and chronology in IoT environments. However, IoT ecosystems are resource‐constrained and have low bandwidth and finite computing power of sensor nodes. Thus, the inclusion of blockchain requires an effective policy design regarding consensus and smart contract environments in heterogeneous IoT applications. Recent studies have presented blockchain as a potential solution in IoT, but an effective view of consensus and smart contract design to meet the end application requirements is an open problem. Motivated by the same, the survey presents the integration of suitable low‐powered consensus protocols and smart contract design to assess and validate the blockchain‐IoT ecosystems. We present blockchain‐IoT's emerging communication and security aspects with performance issues of consensus protocols, interoperability, and implementation platforms. A case study of a smart contract‐based blockchain‐driven ecosystem is presented with a comparative analysis of mining cost and latency, which shows its suitability in real‐world setups. We also highlight attacks on blockchain IoT, open issues, potential findings, and future directions. The survey intends to drive novel solutions for future consensus and safe, smart contract designs to support applicative IoT ecosystems.

Publisher

Wiley

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Permissioned Blockchain Approach for Real-Time Embedded Control Systems;Mining Intelligence and Knowledge Exploration;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3