Affiliation:
1. School of Materials, Energy, Water and Environmental Sciences (MEWES) Nelson Mandela African Institution of Science and Technology (NM‐AIST) Arusha Tanzania
2. Tanzania Commission for Science and Technology (COSTECH) Dar es Salaam Tanzania
3. School of Business Studies and Humanities (BuSH) Nelson Mandela African Institution of Science and Technology (NM‐AIST) Arusha Tanzania
4. Department of Mechanical Engineering Arusha Technical College (ATC) Arusha Tanzania
Abstract
AbstractPostharvest losses (PHLs) of biomaterials, such as vegetables and fruits, significantly impact food security and economic stability in developing nations. In Tanzania, PHLs are estimated to range between 30% and 40% for cereal crops and even higher for perishable crops such as fruits and vegetables. Open‐sun drying (OSD) is the most extensively employed method because of its affordability and simplicity. However, OSD has several drawbacks, including difficulties in managing drying parameters, long drying times owing to adverse weather, and product contamination. The solar‐assisted heat pump dryer (SAHPD) is a technology designed as an alternative solution for drying biomaterials and reducing PHL. A limited number of SAHPDs have been constructed in developing nations. Most of the works have concentrated on the performance analysis of the systems. This neglects the techno‐economic assessment, which is important to provide both a quantitative and qualitative understanding of the financial viability of the technology. The present study therefore investigates the techno‐economic analysis of a novel SAHPD for drying agricultural products, particularly vegetables and fruits. To determine whether the SAHPD technology is technically and economically viable, tomatoes and carrots were dried and analyzed to determine their thermal and economic performance. The results show that the initial moisture contents of tomatoes (Lycopersicum esculentum) and carrots (Daucus carota) were reduced from 93% and 88% to 10% in 11 and 12 h, respectively. The coefficient of performance (COP), drying time (DT), specific moisture extraction ration (SMER) and thermal efficiency () were found to be 3.4, 2.3 kg/h, 1.33 kg/kWh and 54.0%, respectively. The economic analysis was assessed using the annualized cost, lifecycle savings, and payback period for the dryer's life span of 15 years. The initial investment of the SAHPD was $5221.8 and the annualized cost was $1076.5. The cumulative present worth for 15 years was found to be $23,828.8 and $27,553.1 for tomatoes and carrots, respectively. The payback period for tomatoes was found to be 3 years, whereas for carrots it was 2.6 years. Based on thermal and economic performance assessment results, the developed SAHPD is technically and economically viable to be considered for further investments.
Funder
Tanzania Commission for Science and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献