The RNA‐binding protein Cpeb4 regulates splicing of the Id2 gene in osteoclast differentiation

Author:

Arasaki Yasuhiro1,Hayata Tadayoshi1ORCID

Affiliation:

1. Department of Molecular Pharmacology, Faculty of Pharmaceutical Science, Graduate School of Pharmaceutical Sciences Tokyo University of Science Noda Chiba Japan

Abstract

AbstractCytoplasmic polyadenylation element‐binding protein 4 (Cpeb4) is an RNA‐binding protein that regulates posttranscriptional regulation, such as regulation of messenger RNA stability and translation. In the previous study, we reported that Cpeb4 localizes to nuclear bodies upon induction of osteoclast differentiation by RANKL. However, the mechanisms of the localization of Cpeb4 and osteoclastogenesis by Cpeb4 remain unknown. Here, we show that Cpeb4 localizes to the nuclear bodies by its RNA‐binding ability and partially regulates normal splicing during osteoclast differentiation. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis analysis with Phos‐tag® revealed that the phosphorylation levels of Cpeb4 were already high in the RAW264.7 cells and were not altered by RANKL treatment. Immunofluorescence showed that exogenous Cpeb4 in HEK293T cells without RANKL stimulation localized to the same foci as shown in RANKL‐stimulated RAW264.7 cells. Furthermore, when nuclear export was inhibited by leptomycin B treatment, Cpeb4 accumulated throughout the nucleus. Importantly, RNA recognition motif (RRM) 7 of Cpeb4 was essential for the localization. In contrast, the intrinsically disordered region, RRM1, and zinc finger domain CEBP_ZZ were not necessary for the localization. The mechanistic study showed that Cpeb4 co‐localized and interacted with the splicing factors serine/arginine‐rich splicing factor 5 (SRSF5) and SRSF6, suggesting that Cpeb4 may be involved in the splicing reaction. RNA‐sequencing analysis revealed that the expression of genes related to cell proliferation processes, such as mitotic cell cycle and regulation of cell cycle processes, was elevated in osteoclasts depleted of Cpeb4. Interestingly, the splicing pattern of the inhibitor of DNA binding 2 (Id2) gene, which suppresses osteoclast differentiation, was altered by the depletion of Cpeb4. These results provide new insight into the role of Cpeb4 as a player of normal splicing of Id2 in osteoclast differentiation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3