Effects of oropharyngeal administration of own mother's milk on oral microbial colonization in very low birth weight infants fed by gastric tube: A randomized controlled trial

Author:

Liu Jie1ORCID,Zhang Xiyang1,Zhao Qian2,Mu Xiaohe3,Yang Chuanzhong1,Ning Yan1,Xiong Xiaoyun1,Qin Xiaoling1,Chen Lilian1

Affiliation:

1. Department of Traditional Chinese Medicine Gynecology, Pediatric Neurorehabilitation Department, Department of Neonatology Shenzhen Maternity and Child Healthcare Hospital Shenzhen China

2. School of Nursing Shanxi University of Chinese Medicine Taiyuan Shanxi China

3. Department of Critical care medicine Shaanxi Province Kangfu Hospital Xi'an China

Abstract

AbstractAimsThe aim of the present study was to explore the effect of oropharyngeal mother's milk administration on oral microbial colonization in infants fed by gastric tube at different time points.MethodsInfants (n = 116) with birth weight <1500 g were randomly allocated into two groups which both received breast milk for enteral nutrition. The control group (n = 51) accepted oropharyngeal normal saline administration. The experimental group (n = 53) accepted oropharyngeal mother's milk administration before fed by gastric tube once every 3 h over 21 days after birth. We analyzed the oral microbiota at initiation and 7 and 14 and 21 days later using 16S DNA amplicon sequencing.ResultsThere were no difference in oral microbial diversity between the two groups at any time point, but diversity decreased significantly over time in both groups. On the first day of life, the oral microbiota of the infant in the experimental and control groups consisted mainly of Firmicutes (7.75%, 6.18%) and Proteobacteria (68.65%, 68.69%), respectively. As time increases to 21 days after birth, Firmicutes (77.67%, 77.66%) had replaced Proteobacteria (68.65%, 68.69%) as the predominant phylum.DiscussionFrom birth to 21 days after birth, oropharyngeal mother's milk administration did not change the diversity and structural composition of the oral microbiota. The oral microbial diversity of infants declined significantly over time. Firmicutes had replaced Proteobacteria as the predominant phylum.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3