Micro aneurysm detection using optimized residual‐based temporal attention Convolutional Neural Network with Inception‐V3 transfer learning

Author:

Alotaibi Nouf Saeed1ORCID

Affiliation:

1. Department of Computer Science Shaqra University Shaqra Saudi Arabia

Abstract

AbstractIn this manuscript micro aneurysm detection using residual‐based temporal attention Convolutional Neural Network (CNN) with Inception‐V3 transfer learning optimized with equilibrium optimization algorithm (MA‐RTCNN‐Inception V3‐EOA) is proposed. The proposed research work contains four phases: (1) pre‐processing, (2) segmentation, (3) post‐processing, and (4) classification. At first, guided box filtering for contrast enhancement and background exclusion of input image. The proposed MA‐RTCNN‐Inception V3‐EOA based classification framework is implemented in MATLAB using several performances evaluating metrics like precision, sensitivity, f‐measure, specificity, accuracy, classification error rate, and Matthews's correlation coefficient and RoC analysis. The experimental outcome demonstrates that the proposed method provides 23.56%, 14.99%, and 21.37% higher accuracy and 31.26%, 57.69%, and 21.14% minimum classification error rate compared to existing methods, such as diabetic retinopathy identification utilizing prognosis of micro aneurysm and early diagnosis for non‐proliferative diabetic retinopathy depending on deep learning approaches (DRD‐CNN‐NPDR), a magnified adaptive feature pyramid network for automatic micro aneurysms identification (MAFPN‐AMD‐MAFP‐Net) respectively.Research Highlights Micro aneurysm detection using residual‐based temporal attention Convolutional Neural Network (CNN) is proposed. To get rid of the retina background, guided box filtering is applied. COAT is used for segmenting the images into smaller parts RTCNN is used for accurate micro aneurysms disease classification. RT‐CNN algorithm successfully identifies the micro aneurysms using EOA.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3