A full‐scale case study of vibration‐based structural health monitoring of bridges: prospects and open challenges

Author:

Reuland Yves1,Garcia‐Ramonda Larisa12,Martakis Panagiotis1,Bogoevska Simona3,Chatzi Eleni1

Affiliation:

1. Dept. of Civil, Environmental and Geomatic Engineering ETH Zurich Switzerland

2. Department of Civil and Environmental Engineering Universitat Politènica de Catalunya Barcelona Spain

3. Faculty of Civil Engineering University of Ss. Cyril and Methodius Skopje North Macedonia

Abstract

AbstractThe implementation of Structural Health Monitoring (SHM) offers the prospect for sustainable and safe service‐life extension of existing bridges, a large portion of which is approaching the end of their nominal life. Many SHM frameworks for civil infrastructure address timely damage detection and identification. However, the scarcity of case studies on real damaged bridges hinders the generalized application of SHM in practice. In this contribution, monitoring data from a four‐day campaign on the Ponte‐Moesa bridge, a three‐span concrete box‐girder bridge, is presented as a benchmark for data‐driven damage diagnosis schemes. The monitoring data, covering accelerations from ambient and forced vibrations, contains the reference state after concluding the service life along with several gradually increasing damage states, including drilling holes and cutting reinforcement rebars and prestressed cables. The potential of damage‐sensitive features to identify damage is presented and the uncertainties, resulting from the environmental and operational conditions and sensor malfunctioning, pertaining to robust damage detection are discussed. Drawing from real bridge monitoring data, a range of prospects and open challenges of vibration‐based SHM for bridges are reviewed.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3