The intriguing role of the aqueous matrix in advanced water disinfection: can a harmonic relationship be achieved?

Author:

Kyriazi Aphroditi1,Gounaki Iosifina1,Mantzavinos Dionissios2ORCID,Venieri Danae1ORCID

Affiliation:

1. School of Chemical and Environmental Engineering Technical University of Crete Chania Greece

2. Department of Chemical Engineering University of Patras Patras Greece

Abstract

AbstractThis perspective article primarily discusses the role of water matrix for the advanced treatment of watercourses. This relies on experimental work regarding the inactivation of Escherichia coli, Enterococcus faecalis, and Vibrio parahaemolyticus by an advanced oxidation process, namely activated persulfate, in five matrices of varying complexity, (i.e., from as simple as deionized water to secondary treated effluent). For comparison purposes, respective tests were performed with ultraviolet (UVC) radiation, a conventional disinfection process, while results from recent literature are also discussed. Only in deionized water can activated persulfate (i.e., 150 mg L−1 sodium persulfate and 30 mg L−1 ferrous ions) completely inactivate all three bacteria in the course of several minutes, but the process is ineffective in other matrices (i.e., bottled, tap, or lake water, as well as wastewater), where 1–2 orders of magnitude longer times are needed for partial inactivation, which decreases in the order E. coli > E. faecalis ~ V. parahaemolyticus. Conversely, UVC (at 30 W nominal value) is highly efficient against all bacteria and in all matrices in a matter of just a few seconds. The general perception is that treatment efficiency decreases with increasing matrix complexity in terms of total concentration and/or individual components composition, irrespective of the applied treatment method and its objectives (i.e., disinfection, decontamination, or mineralization). However, there are always exceptions the rule, further highlighting how case‐specific advanced water treatment can be. The matrix itself should be given particular emphasis for the rational design of efficient water treatment processes. © 2023 Society of Chemical Industry (SCI).

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 8th European Bioremediation Conference (EBCVIII);Journal of Chemical Technology & Biotechnology;2024-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3