Multi‐wavelength multi‐direction laser light scattering for cell characterization using machine learning‐based methods

Author:

Liu Lina1,Islam Md Zahurul12,Liu Xiaoxuan1ORCID,Gupta Manisha1,Rozmus Wojciech3,Mandal Mrinal1,Tsui Ying Yin1

Affiliation:

1. Department of Electrical and Computer Engineering University of Alberta Edmonton Canada

2. Department of Electrical and Electronic Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh

3. Department of Physics University of Alberta Edmonton Canada

Abstract

AbstractCell identification and analysis play a crucial role in many biology‐ and health‐related applications. The internal and surface structures of a cell are complex and many of the features are sub‐micron in scale. Well‐resolved images of these features cannot be obtained using optical microscopy. Previous studies have reported that the single‐cell angular laser‐light scattering patterns (ALSP) can be used for label‐free cell identification and analysis. The ALSP can be affected by cell properties and the wavelength of the probing laser. Two cell properties, cell surface roughness and the number of mitochondria, are investigated in this study. The effects of probing laser wavelengths (blue, green, and red) and the directions of scattered light collection (forward, side, and backward) are studied to determine the optimum conditions for distinguishing the two cell properties. Machine learning (ML) analysis has been applied to ALSP obtained from numerical simulations. The results of ML analysis show that the backward scattering is the best direction for characterizing the surface roughness, while the forward scattering is the best direction for differentiating the number of mitochondria. The laser light having red or green wavelength is found to perform better than that having the blue wavelength in differentiating the surface roughness and the number of mitochondria. This study provides important insights into the effects of probing laser wavelength on gaining information about cells from their ALSP.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Cell Biology,Histology,Pathology and Forensic Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3