Unbiased method for spectral analysis of cells with great diversity of autofluorescence spectra

Author:

Roet Janna E. G.12ORCID,Mikula Aleksandra M.12,de Kok Michael123ORCID,Chadick Cora H.123,Garcia Vallejo Juan J.123ORCID,Roest Henk P.4,van der Laan Luc J. W.4ORCID,de Winde Charlotte M.125ORCID,Mebius Reina E.12ORCID

Affiliation:

1. Department of Molecular Cell Biology and Immunology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands

2. Amsterdam Institute for Immunology and Infectious Diseases Amsterdam The Netherlands

3. Microscopy and Cytometry Core Facility Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands

4. Department of Surgery Erasmus MC Transplant Institute, University Medical Center Rotterdam Rotterdam The Netherlands

5. Cancer Biology and Immunology Cancer Center Amsterdam Amsterdam The Netherlands

Abstract

AbstractAutofluorescence is an intrinsic feature of cells, caused by the natural emission of light by photo‐excitatory molecular content, which can complicate analysis of flow cytometry data. Different cell types have different autofluorescence spectra and, even within one cell type, heterogeneity of autofluorescence spectra can be present, for example, as a consequence of activation status or metabolic changes. By using full spectrum flow cytometry, the emission spectrum of a fluorochrome is captured by a set of photo detectors across a range of wavelengths, creating an unique signature for that fluorochrome. This signature is then used to identify, or unmix, that fluorochrome's unique spectrum from a multicolor sample containing different fluorescent molecules. Importantly, this means that this technology can also be used to identify intrinsic autofluorescence signal of an unstained sample, which can be used for unmixing purposes and to separate the autofluorescence signal from the fluorophore signals. However, this only works if the sample has a singular, relatively homogeneous and bright autofluorescence spectrum. To analyze samples with heterogeneous autofluorescence spectral profiles, we setup an unbiased workflow to more quickly identify differing autofluorescence spectra present in a sample to include as “autofluorescence signatures” during the unmixing of the full stained samples. First, clusters of cells with similar autofluorescence spectra are identified by unbiased dimensional reduction and clustering of unstained cells. Then, unique autofluorescence clusters are determined and are used to improve the unmixing accuracy of the full stained sample. Independent of the intensity of the autofluorescence and immunophenotyping of cell subsets, this unbiased method allows for the identification of most of the distinct autofluorescence spectra present in a sample, leading to less confounding autofluorescence spillover and spread into extrinsic phenotyping markers. Furthermore, this method is equally useful for spectral analysis of different biological samples, including tissue cell suspensions, peripheral blood mononuclear cells, and in vitro cultures of (primary) cells.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Cancer Center Amsterdam

KWF Kankerbestrijding

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autofluorescence: From burden to benefit;Cytometry Part A;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3