Exploitation of elasto‐inertial fluid flow for the separation of nano‐sized particles: Simulating the isolation of extracellular vesicles

Author:

Pouraria Hassan1,Foudazi Reza2,Houston Jessica P.1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering New Mexico State University Las Cruces New Mexico USA

2. School of Chemical, Biological, and Materials Engineering The University of Oklahoma Norman Oklahoma USA

Abstract

AbstractHigh throughput and efficient separation/isolation of nanoparticles such as exosomes remain a challenge owing to their small size. Elasto‐inertial approaches have a new potential to be leveraged because of the ability to achieve fine control over the forces that act on extremely small particles. That is, the viscoelasticity of fluid that helps carry biological particles such as extracellular vesicles (EVs) and cells through microfluidic channels can be tailored to optimize how different‐sized particles move within the chip. In this contribution, we demonstrate through computational fluid dynamics (CFD) simulations the ability to separate nanoparticles with a size comparable to exosomes from larger spheres with physical properties comparable to cells and larger EVs. Our current design makes use of an efficient flow‐focusing geometry at the inlet of the device in which two side channels deliver the sample, while the inner channel injects the sheath flow. Such flow configuration results in an efficient focusing of all the particles near the sidewalls of the channel at the inlet. By dissolving a minute amount of polymer in the sample and sheath fluid, the elastic lift force arises and the initially focused particle adjacent to the wall will gradually migrate toward the center of the channel. This results in larger particles experiencing larger elastic forces, thereby migrating faster toward the center of the channel. By adjusting the size and location of the outlets, nanoparticles comparable to the size of exosomes (30–100 nm) will be effectively separated from other particles. Furthermore, the influence of different parameters such as channel geometry, flow rate, and fluid rheology on the separation process is evaluated by computational analysis.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Cell Biology,Histology,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3