Convolutional neuronal network for identifying single‐cell‐platelet–platelet‐aggregates in human whole blood using imaging flow cytometry

Author:

Poschkamp Broder12,Bekeschus Sander23ORCID

Affiliation:

1. Department of Ophthalmology Greifswald University Medical Center Greifswald Germany

2. ZIK plasmatis Leibniz Institute for Plasma Science and Technology (INP) Greifswald Germany

3. Clinic and Policlinic for Dermatology and Venerology Rostock University Medical Center Rostock Germany

Abstract

AbstractImaging flow cytometry is an attractive method to investigate individual cells by optical properties. However, imaging flow cytometry applications with clinical relevance are scarce so far. Platelet aggregation naturally occurs during blood coagulation to form a clot. However, aberrant platelet aggregation is associated with cardiovascular disease under steady‐state conditions in the blood. Several types of so‐called antiplatelet drugs are frequently described to reduce the risk of stroke or cardiovascular diseases. However, an efficient monitoring method is missing to identify the presence and frequency of platelet–platelet aggregates in whole blood on a single cell level. In this work, we employed imaging flow cytometry to identify fluorescently labeled platelets in whole blood with a conditional gating strategy. Images were post‐processed and aligned. A convolutional neural network was designed to identify platelet–platelet aggregates of two, three, and more than three platelets, and results were validated against various data set properties. In addition, the neural network excluded erythrocyte–platelet aggregates from the results. Based on the results, a parameter for detecting platelet–platelet aggregates, the weighted platelet aggregation, was developed. If employed on a broad scale with proband and patient samples, our method could aid in building a future diagnostic marker for cardiovascular disease and monitoring parameters to optimize drug prescriptions in such patient groups.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3