Affiliation:
1. Department of Structural Engineering, Faculty of Engineering Cairo University Giza Egypt
2. Department of Civil and Environmental Engineering, Faculty of Engineering The University of Western Ontario London Ontario Canada
Abstract
SummaryStaged‐construction analysis (SCA) has recently become a noticeable trend for estimating the design forces and deformations for high‐rise buildings (HRBs). SCA is a nonlinear step‐by‐step analysis that simulates the construction activities and conditions. It is a numerical simulation that considers loading history during construction, time‐dependent material behavior, environmental conditions, and any special measures taken by contractors to limit differential axial shortening during the construction process. However, building codes and guidelines do not provide adequate provisions that clearly identify how to approach this type of analysis. This paper presents a comprehensive state‐of‐the‐art review on how SCA was previously adopted in theoretical research and how it was applied in real buildings. It begins by critically reviewing different research work on SCA. Afterward, the paper puts forward the recent fundamentals of conducting SCA. Then, a series of studies about verifying SCA as practical analysis procedure using field measurements are then presented. In addition, the current paper reviews how SCA can specifically affect post‐tension slabs. Based on this review, several recommendations are provided to help in shaping the future code provisions, add to the development of recent practices, and inspire future research. The conducted review concludes that more investigations should be performed to better understand the effect of considering SCA on the deformations and design forces during HRB analysis.
Subject
Building and Construction,Architecture,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献