A statistical analysis of human talar shape and bone density distribution

Author:

Stolle Jordan1ORCID,Harper Christine M.2ORCID,Voegele Kristyn K.3,Najafi Ahmad R.1,Taheri Mehrangiz1,MacBain Joshua1,Siegler Sorin1

Affiliation:

1. Department of Mechanical Engineering and Mechanics Drexel University Philadelphia Pennsylvania USA

2. Department of Biomedical Sciences Cooper Medical School of Rowan University Camden New Jersey USA

3. Department of Geology Rowan University School of Earth and Environment Glassboro New Jersey USA

Abstract

AbstractThe shape of the talus, its internal structure, and its mechanical properties are important in determining talar behavior during loading, which may be significant for the design of surgical tools and implants. Although recent studies using statistical shape modeling have described quantitative talar external shape variation, no similar quantitative study exists to describe the density distribution of internal talar structure. The goal of this study is to quantify statistical variation in talar shape and density to benefit the design of talar implants. To this end, weight‐bearing computed tomography (CT) scans of the ankle were collected in neutral, bilateral standing posture, and three‐dimensional models were generated for each talus. Local density derived from the Hounsfield unit of each CT voxel was extracted. A weighted spherical harmonic analysis was performed to quantify the talar external shape. One hundred and seventy‐nine volumes of interest were placed in the same relative position within each talus to quantify the talar density. Additionally, a finite element analysis (FEA) was conducted on a talus with both heterogeneous and homogeneous material properties to observe the effect of these properties on the stress and strain response. Significant differences were found in the talar density in sex and age, as well as in the stress and strain response between homogeneous and heterogeneous FEA. These differences show the importance of considering heterogeneity when examining the load response of tarsal bones.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3